
N91-25953

MEASURING THE EFFECTS OF HETEROGENEITY ON

DISTRIBUTED SYSTEMS

Mohamed E1-Toweissy Osman ZeinEll)ine Ravi Mukkamala

Department of Computer +qcienc<'

Old I)()tllilti(_ll IlIliv<.rsity

Norfolk, Virginia 22152!1

ABSTRACT

Distributed computer systems in daily use are be-

coming more and more heterogeneous. Currently,

much of the design and analysis studies of such sys-

tems assume homogeneity. This assninption of ho-

mogeneity has been mainly driven by the restllting

simplicity in modeling and analysis. In this paper,

we present a simulation study to investigate the ef-

fects of heterogeneity on scheduling algorithms for

hard real-time distributed systems. In contrast to

pervious results which indicate that random schedul-

ing may be as good as a more complex scheduler, our

algorithm is shown to be consistently better tlian a

random scheduler. This conclusion is more prevalent

at high workloads as well as at high levels of hetero-

geneity.

INTRODUCTION

With the adwmcing communication technologies

and the need for integration of global systems, het-

erogeneity is becoming a reality in distributed com-

puter systems, tIowever, most existing performance

studies of such systems still assume homogeneity; be

it in hardware (e.g., node speed) or in software (e.g.,

scheduling algorithms). Generally, such homogeneity

assumptions are dictated by the resulting simplicity

in modeling and analysis.

Clearly, heterogeneous systems are less analyti-

cally tractable than their homogeneous counterparts.

Typically, heterogeneity will result in increased num-

ber of variables in the context of analytical tech-

niques such ,as mathematical programming, proba-

bilistic analysis, and queuing theory. 'Finis is one re+i-

son for assuming homogeneity while using analyti-

cal techniques. In the case of simulation techniques,

however, it is possible for a modeler to introduce any

level of heterogeneity into the system. The prohlem

now lies in the complexity of interpretation of the

restllts. If the simulator was writl.en with the basic

objective of te_ting a hypothesis or coml)ariug the

perfornmnce of a :-;et of algorithnls, introducing het-

erogen,'it.y ',','ill sul,slant.ially increase efforts to sep-

arate ils effects front those of the algorithnl. Thus,

it tile(Icier i.s Inert']ik,,ly i.o ;t.SNIIU|{' ;! hotliogt?tl(+Oll.S

system.

With this in mind, w<+ have been investigating into

t,h[" t'll'<'cts tff h('terogeneity +m the l)erformance of

dist.rilitlied sysleilis+ ()lit initiM efforts, reliOrlt.¢+(I

in (Zeinl';ll)ine et al. 1991) and this paper, focus

on scheduling in hard real-time systems. For this

purpose, we haw" designed a tlistril)uted scheduler

alined at handling various heterogelteities; in partic-

ular, heterogeneities in tiodes, node tratl]c and local

scheduling algorithnls.

In the rest of this paper we present the systenl model.

Next., we discuss sonic is.sues related to the effectiw,-

ness of our algorithin. Ma.ior results with their t'_'-

st>of'live com'lusio,ls arc then portrayed. I"inally, w_"

highlight some reconmlcmlations for l'ut.ure work.

THE PI/OPOSED MODEL

For the I)Urlioses of scheduling, the distributed sys-

tem is tnodeled as atl'<'," of nodes as is shown in Fig-

ure 1. 'l'ht_ nodes ;it the Iow<'st level (level 01 ar<'

th<' l_r+Jc<.+.sUi9 Ilotlt's while tile uoth>s at the hight,r

levels I'elii'i,.,.ienl server<,; (or gnardians). A process-

ing node is responsil)le for executing arriving jol+s

when they l/leel, SOlile specified criteria (e.g., dead-

line). The processing nodes are grouped into clns-

lets, and ,,ach chisl.('r is /tssiglt_(I a unique serv<,r.

_]h,,'n il _,(.rvl,r rl.ll,ivl._ ;i j<,l,, il. l.i'i('s Io eit.ln.r rq'di-

rect that job to a processing node within its chrsLer

or to its guardian. It is to be noted that this hier-

archicM structnre could be logical (i.e., some of the

processing nodes may thelnselves assulne the role of

the servers).

The system model has four components: jobs, pro-

cessing nodes, servers, and the communication sub-

system. A job is characterized by its arrival time,
execution time, deadline, and priority (if any). Tile

specifications of a processing node include its speed

factor, scheduling policy, external arrival rate (of

jobs), and job mix (due to heterogeneity). A server is

modeled by its speed and its node assigmnent policy.

Finally, the communication subsystem is represented
by the speeds of transmission and distances between

different nodes (processing and servers) in tile sys-
tem.

O perat ion

The flow diagram of tile scheduling algoritJnn is

shown in Figure 2. When a job with deadline arrives
(either from an external user or from a server) at

a processing node, the local scheduling algorithnl at
tile node decides whether or not to execute this job

locally. This decision is based on pending jobs in
the local queue (which are already guaranteed to be

executed within their deadlines), the requirements of

the new job, and the scheduling policies (e.g., FCFS,

SJF, SDF, SSF etc. (Zhao et al. 1987)). In case the
local scheduler cannot execute the new job, it either

sends the job to its server (if there is a possil)ility of

completion), or discard the job (if I.here is no such

chance of completion).

The level-1 server maintains a copy of the latest

information provided by each of its child nodes in-

eluding the load at the node and its scheduling pol-

icy. Using this information, the server should be able

to decide which processing nodes are eligible for exe-
cuting a job and meet its deadline. When more than

one candidate node is available, a random selection
is carried out among these nodes. If a server can-

not find a candidate node for executing tl,e job, it.

forwards the job to the level-2 server.

The information at the level-2 server consists of an

abstraction of the information available at each of the

level-1 servers. This server redirects an arriving job
to one of the level-1 servers. The choice of candidate

servers is dependent on the ability of these servers to

redirect a job to one of the processing nodes in their
cluster to meet the deadline of the job. (For more

details on operation and information contents at each
level, the reader is advised to refer to (ZeinEII)ine et

al. 1991)).

EXPERIMENT

In order to utilize the proposed scheduler ,_s a w>
hicle for our research on measuring the elfects of het-

erogeneigy, first it has to be proven effective. Conse-

quently, we have conducted several parametric stud-

ies to determine the sensitivity of our algorithm to

various parameters: the cluster size, the frequency
of propagation of load statistics (between levels), the

processing node scheduling policy (FCFS, SJF etc),
the communication delay (between nodes), and lhe

effects of information structures. For lack of space,

we present a sample of the results pertaining to the
first three of these parameters. Accordingly, all the

results reported here assume:

• the total number of processing nodes iS 100;

• equal load at all nodes;

• c¢.ln_ulnicali_m _l,'l;o' hplv,'_'_'ll ally n_>dps is Ih_'

Sillll('.

The perform;nice of lhe scheduler is measm'ed in
terms of the percentage of johs discarded by the al-

gorilhm (at levels 0, i & 2). The rate of arrivals
of jobs aml lheh' processing reqnirements are com-

binedly represented through a load factor. This load

factor refers to the load ou the overall system. Our
load consists of jobs from three types of execution

time constraints (10, 50 & 100) with slack (25, 35 &

300) respectively.

Discussion

\Ve now discus,_ ,mr _d_servn/ions regarding the

char;tcleristics of tl.' ,lisLrilmled schrdulit,g algo-
rithm (DSA) in lerms of the three selected param-
eters. In order to isolate t.he effect of one factor fi'om

others, the choice of parameters is made .jmlicio,,sly.

For example, in studying the effects of cluster size

(Figure 3), the updation period is chosen to be a

medium value of 200 (star=200). For each paralnet-
ric study we have two sets of runs, they differ in the

local scheduling policy at the processing uodes; one
set uses I"('I"S whih. the the other uses S.IF.

Clustm' size (2h,st,.'r size imlicates the u,tml>e,

of processing nodes being assigned to a level-I server.

In our study, we haw co,sidered three cluster sizos:
100, 50, and 10. A clusler of 100 nodes indicates

a centralized server structure where all the process-

ing 1redes at',' under one l,.'vel-1 server. In tiffs case,
level-2 server is al_seut. Similarly, in Ihe case of clus-

ter of 50 nodes, there are two level-1 servers, and one
level-2server. For 10-nodecluster, we have 10level-1

serw'rs. In athlitiou, we consider a completely decen-

tralized caLse represented by I,he ra,dom policy. In
this case, each processing node acl.s as its own server

and rat,domly selects a d,,stination node to execut,,

a job which it cannot locally guarantee.

Tim resti/ls ;ire plotted in Figore 3. These resli]ts

show that our algorithm is robust to variations in

cluster size. In addition, its performance is signifi-

cantly superior to a random policy.

Frequency of updations "File currency of in-

formation at a node about the rest of the system

plays a major role in performance, tlence, if the

state of processing nodes varies rapidly, then tile fre-

quency of status information exchange between the

levels should also be high. In order to determine the

sensitivity of the proposed algorithm to the period of

updating statistics at tile servers, we experimented

with four time periods: 25, 100, 200 and 500 units.

Tile results are summarized in Figure 4. From these

results, the following observations are drawn:

• our algorithm is extremely sensitive to changes

in period of infornaation exchanges between

servers and processing nodes;

• even in the worst case of 500 units, the per-

formance of our algorithm is significantly better

than the random policy.

Local scheduling policy Our third parametric

study is concerned with the effect of the scheduling

policy at the processing nodes. In this paper, we

report the results of the runs conducted with all the

processing nodes having the same scheduling policy;

either I"CI"S or SJI". I,ater iu our work, we plan 1o

experiment with different mixes of local scheduling

policies. We would also give each node the freedom to

select its scheduling policy in order to determine the

impact of node autonomy on the overall performance

of the system. This issue is of crucial importance,

since there is no scheduling policy that best fits all

working environments.

Revisiting the results of Figures 3 and 4, we can

observe the following:

• both FCFS and SJF behave similarly at light to

moderate loads, while SJ F is consistently better

than FCFS at high loads;

• the percentage of discarded jobs sharply in-

creases with the increase in the load factor for

both the Random and FCFS policies, ltowever,

for SJF the rate of increase in the percentage of

discarded jobs dramatically drops at high loads.

The reason for the above result is that, at. light to

moderate loads there is no build t,p at the processing

node queues, consequently, the dominant factor is the

jobs being processed at the node processors. This

behavior is the same for all policies, l[owever, when

the queues start to build up, the respective queue

policy prevails. Hence, for the SJF, the short jobs

with their relatively small slack, will have a better

probability of heing executed.

EFFECTS OF HETEROGENEITY

So far, our concentration has been on gaining bet-

ter insight into the Imhavior of our algorithm in ol"-

der to assess its viability and suitability to he able

to conduct further research. Proven effective, we re-

turn back to the objective for which the alger,Ibm

has been developed. The main goal of the current

phase of our studies is measuring the effects of hcf

eroge_eity on scheduling in hard real-time distrihmed

systems. For this purpose, we are pursuing multiple

experiments to measure l he effects of node hetero-

gel,eily (simply repr,,s, qd,ed by node speed), hetero-

gem'ity in scheduling algorilhllls, helm'ogencily in

loads as well as other syslenl heterogeneities. In this

paln.r , we present the etfi.cts of node helerogeneily.

(]{esulls oil olluq' lylws will hc r(.ported irl a s_._lU(:l

of papers).

We consider four different node speed distributions

(hetl, he,2, he,3, and hem). The ho,nogeneous case

(denoted by hem) represents a system with 100 nodes

having the same unit speeds. The three he.teroge-

neous case are represented by hetl, he,2, and he,3.

Each of these see are described by a set of <# of

nodes, speed factors> pairs. The average speed fac-

tor for all dis|ribution is 1.0. so the average systent

sp,.,'d is th,. s;IIIII'. 'l'hc t l_rcc h,,tol',)gCllCOllS c;l:.,(, dil'-

fer in their Sl>,!,rd [actor V;tli;tllC,., tilllS varying I,Imd,>

gree of heterogeneity. While bet3 represents a severe

case of heterogeneity, hell is more biased towards

homogeneity.

The results are illchlded in Figure 5. From lhese

results, we observe Ihal :-

• with our algorithm, even though the increase in

degree of heterogeneity resulted in an increase of

discarded jobs, the increase is not do signiticant.

Ih'nce, our algoi'ithtlt ;tpln,arn to I:.' robust t_>

re>de bet ,_rogem.il.ics.

• the performance of the random policy i.s ex-

tremely sensit.iwe Io the node heterogeneity. As

the hete,'ogeneity is increased, the. number of dis-

carded jobs is also significantly increased.

With the increase in node heterogeneity, the nun,her

of nodes with slow speed also increase. Thus, using

a rando,n policy, if a slow speed node is se.lected ran-

domly, t.l,,'n the' .i',h i,_ ,,,,,,',' lik,'ly tlf) I-' discar,h',l. II,

our alger,film , sire'," tl,,., server is aware of the hel.-

erogeneities, il. can suitably avoid a low speed node

when uecessary, l"ven in this case, there, is a te,ld,'ncy

for high-slwed nodes Io be overloaded and low speed

nodes to be under loaded, llence, the difference in

performance.

CONCLUSION

In this paper, we have presented a distributed

scheduling algorithm that can tolerate different types

of system heterogeneity. Following, we have con-

ducted several parametric studies with the objective

of evaluating the effectiveness of our algorithm. Ren-

dering its effectiveness, we have started pursuing our

studies toward our goal of determining the impact

of heterogeneity on the overall system performance.

Our initial step has been reported here, and it con-

centrates on the effect of node heterogeneity. Some

interesting results have been obtained. From these

results, we reach the following conclusions.

• Concerning the algorithm behavior: the algo-

rithm is robust to variations in tile cluster size;

besides, it elliciently utilizes tile availal)h: state

information; moreover, it is sensitive to the local

scheduling policy at the processing nodes.

• Concerning the effect of heterogeneity: the per-

formance of the algorithm tends to be invariant

with respect to node heterogeneity; in addition,

the algorithm has a large improvement over the

random selection in terms of the percentage of

discarded jobs.

Currently, we are studying the effects of hetero-

geneity in local scheduling algorithms and hetero-

geneities in loads on the performance of tile over-

all system. With heterogeneities in scheduling poli-

cies, each node may autonomously decide its own

scheduling policy (FCFS, SJF, etc.). Similarly, by

load heterogeneities we let the external load at a

node be independent of the other nodes. Similarly,

each node may autonomously decide its resources and

their speeds. We propose to measure the effects of

such heterogeneities in terms of the response time

and throughput. We conjecture that the performance

of random policies will continue to deteriorate under

these heterogeneities as compared to even simple re-

source allocation or execution policies.

ACKNOWLEDGEMENT

This research was sponsored in part by the NASA

Langley Research Center under contracts NAG-I-

ll14 and NAG-l-1154.

References

Biyabani, S.R.; J.A. Stankovic; and K. Ra-

mamritham. 1988. "The integration of deadline

and criticalness in hard real-time scheduling."

Proc. Real-time Systems Symposium, (DEC.),

152-160.

Chuang, J.Y. and J.W.S. Liu. 1988. "Algorithms

for scheduling periodic jobs to minimize aver-

age error." Proc. Real-time Systems Sympos_vm,

(DEC..), 142-151.

Craig, D.W. and C.M. Woodside. 1990. "'Th(: re-

jection rate for tasks with random arrivals, dead-

lines, and preemptive scheduling." IEEE TraT_s.

Software Engtneerillg SE-16, no. 10(OCT.),

1198-1208.

[7 Eager D.L.; E.D. Lazowska; and J. Zahorjan.

1986. "Adaptive load sharing iu homogeneous

distributed systems." IEEE Trans. Software En-

gtneertng, SE-12(May), no. 5, 662-675.

Rajkumar R.; L. Sha; and ,].P. l,ehoczky. 1'988.

"'l{c;d-l, iuw syuchrtmizati(m i)rotocols for tlml-

til)roccssors," Proc. Real-Irate Systems Sympo-

stum. (1)1':('.), 25!)-2(]9.

Shin, K.G.; C.M. Krishna; and Y.II. Lee. "Ol)-

titnal resource control in periodic real-time en-

vironments." Proc. Real-time Systems Sympo-

sium. (DEC), 33--II.

[] Stankovic 3. and h:. l_amamritham. L986.

"Evaluatiotl of a bidding algorithm for hard

real-time distributed sysletlls." IEEE Tran._.

Compute r._C-34, rio. i 2(Dee.), 1130-1143.

[] ZeiuEIl)ille, O.; M. EI-Toweissy; amt R. Mukka-

mala. 1991. "' A Distributed Scheduling Algo-

rithm for Ileterogeueous Real-time Systems." To

apl)ear in Lecturer Notes 17_ ('ompnler Sc_euct,

Springer-Verlag.

[] Zhao, W.; K. Ranaanaritham; and J. Stankovic.

1987. "Scheduling tasks with resource require-

ments in hard-real time systems." IEEE Tra_s.

Software E_gil_eering SE-13, no. 5(May): 56-t-

577.

() Level 2 server

Level 1 server

Level 0 •

Proc. node

Figure 1 • System Model

from other level I
scr'vcrs

from other child
nodes

Jobs
from other servers

External jobs

k_

"--,r discard

•--- to a level I server

discard

to a processing
node in this

cluster

_d

!

Level 2 server

Level 1 server

I Processing
I node

parture

guaranteed job processor !
queue ___j

!

I

il ___(_ granted
I
I gateway
I discard

Figure 2" Flow diagram of The Algorithm

3O
%

j 2s
o

b 2o

d 15

i

s 10

c

a 5

r

d

. cluster = 100 stat = 200

cluster = 50 corn = 5cluster = IO node: horn ,,_

random J

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

load factor _ a
30

o i stat = 25 cluster = 100

25 stat = 100 com= 5
o stat = 200 node: horn /A
b 20 stat=500

random

S 10

C • " -

r

d

% 30

J 25
o

b 2o

d 15

i
s 10

c

a 5

r

d o

0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9

load factor _ a

,, hom
• hetl
* het2
•het3

% 3O

J
25

0

b
2O

d 15
i
s 10

c

a 5

r

d o

Figure 3:

30

25

20

Effect of cluster size Is

1o

5

/
• cluster = 100 star = 200 /
• cluster = 50 corn = 5 /
+ cluster = 10 node: horn/ //,

..=o. ///

0 0.1 0,2 0,3 0.4 0.5 0.6 0.70.S 0,9

load factor _ b

30

25

20

Figure 4:
Effect of updation period is

lO

3O

25

20

15

load factor

• horn

!hel Random(SJF)_,.,_

X

I0

Figure 5: oo

a Effect of Node Heterogeneity '
30

hetl • <50,1.0>, <25,1.5>,
2s

<25,0.5>

het2 • <50,0.5>, <50,1.5> 20

het3 • <20,0.25>, <20,0.5> 'is
<20,1.0>, <20,1.5>,

<20,1.75> lo

o o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

load factor _ c

/
• stat=25 cluster=lO0 J fl
• stat= 100 corn=5 J J
÷ star= 200 node:hom)_ / ,7
,stat=500 ' / /

. a..om /

0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9
load factor _ b

• horn
• hetl
* het2
• het3

o.1 0.2 0.3 0.4 05 o s 0.7 o s
load factor _ b

0 :

.or. ///

heA Random (FCFS_.,,_her2 JjJ_

o o.1 0.2 0.3 0.4 o.s o.s o.7 o.s 0.9

load factor _ d

